Latent time-varying factors in longitudinal analysis: a linear mixed hidden Markov model for heart rates

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting

Hidden Markov models (HMMs) are a useful tool for capturing the behavior of overdispersed, autocorrelated data. These models have been applied to many different problems, including speech recognition, precipitation modeling, and gene finding and profiling. Typically, HMMs are applied to individual stochastic processes; HMMs for simultaneously modeling multiple processes—as in the longitudinal d...

متن کامل

Multivariate Longitudinal Data Analysis with Mixed Effects Hidden Markov Models

Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random e...

متن کامل

Dynamic Performance Analysis of Hysteresis Motors by a Linear Time-Varying Model

Hysteresis motors are self starting brushless synchronous motors which are being used widely due to their interesting features. Accurate modeling of the motors is crucial to successful investigating the dynamic performance of them. The hysteresis loops of the material used in the rotor and their influences on the parameters of the equivalent circuit are necessary to be taken into considerat...

متن کامل

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

A robust mixed linear model analysis for longitudinal data.

This paper describes robust procedures for estimating parameters of a mixed effects linear model as applied to longitudinal data. In addition to fixed regression parameters, the model incorporates random subject effects to accommodate between-subjects variability and autocorrelation for within-subject variability. Robust empirical Bayesian estimation of subject effects is briefly discussed. As ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics in Medicine

سال: 2014

ISSN: 0277-6715

DOI: 10.1002/sim.6220